
CSE 3902: High-Quality Software

Justin Holewinski

The Ohio State University

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 1/11



What Makes Software “High-Quality”?

Does it work?
• Not good enough

Key metrics for this course:
• SOLID
• Coupling
• Cohesion

Key ideas:
• Simplicity
• Readability
• Maintainability
• Reusability

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 2/11



SOLID

• Single-Responsibility Principle
• Every class has one responsibility/purpose

• Open-Closed Principle
• “Open for extension, closed for modification”

• Liskov Substitution Principle
• aka Design By Contract
• Users of a reference to a base class must be able to use a reference to a derived class

• Interface Segregation Principle
• Do not force clients to depend on interfaces they do not use

• Dependency Inversion Principle
• “Depend upon abstractions, [not] concretions”

For more information: https://en.wikipedia.org/wiki/SOLID

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 3/11



Coupling

How much are components dependent on each other’s details?
• If I want to draw the player sprite, do I need to know how the sprite rendering component is

implemented?

High Coupling:

Player player = game.Player;

DrawSprite(player.X, player.Y, player.Width, player.Height,

player.AnimationFrame);

Low Coupling:

ISprite playerSprite = game.GetPlayerSprite();

playerSprite.Draw();

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 4/11



Cohesion

How well does the code keep to its specific purpose?

High Cohesion:

public void MovePlayer(Vector2 change)

{

this.Position += change;

}

Low Cohesion:

public void DoEverything()

{

MovePlayer();

ShootEnemy();

PlaySound();

}

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 5/11



Simplicity

Software is inherently complex
• Lots of code
• Lots of features
• Lots of dependencies

Simplicity refers to individual components
• A simple component has one element, one purpose

Build complex software by combining simple components

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 6/11



Readability

Would a reasonable programmer be able to understand your code?

Code Style
• Is it easy to understand?
• Do you use self-explanatory variable names?
• Is it consistent?
• Are you decomposing the control flow in a logical, easy-to-understand way?

public class Something

{

public void

DoTheThing(Player abc) {

abc.foo();

abc.Move();

}

}

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 7/11



Readability

How familiar is the team with the programming language?

Do not assume everyone on the team is an expert
• Some teammates may be learning the language for the first time
• Maybe avoid new, complicated language features in such cases

C# Examples
• Lambdas
• LINQ
• Pinning memory

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 8/11



Maintainability

How easy is it to fix bugs and extend your software?
• Add new feature for version N+1
• Replace component with updated version, with minimal code changes
• Adapt to new environment or platform
• Patch a security vulnerability

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 9/11



Reusability

Opt for creating and using reusable software components
• Design to a simple interface, not the specific program
• If you’ve already written a component for something, use it!
• Avoid Not Invented Here (NIH) syndrome

But also do not go too far out of your way for hypotheticals
• “I could spend an extra month to support this extra feature…”

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 10/11



Design Patterns

The purpose of design patterns is to help with all of these metrics

A design pattern provides a well-known template of a solution for a specific software problem
• Each pattern solves a particular type of problem
• The pattern name can be used to communicate with other engineers

• “Let’s use a factory for this!” instead of “Let’s create a class that can construct instances of other
classes by using …”

We’ll investigate several patterns during this course

Justin Holewinski (The Ohio State University) CSE 3902: High-Quality Software 11/11


