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Software Testing

Types of Testing
• Unit Tests: Tests written for specific sections of code, such as individual functions

• Loading a texture
• Detecting a key press
• Checking for collision between hard-coded objects
• Testing all possible collision types

• End-to-End Tests: Tests written against the whole application, usually for testing the application as
a whole

• Launching application and playing through a level
• Smoke Tests: Tests written to verify very basic functionality

• Testing that the application starts
• Positive Tests: Tests ensuring code functions as expected

• Expected to pass
• Negative Tests: Tests ensuring errors are handled gracefully

• Expected to fail gracefully
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Code Coverage

Code Coverage: Percentage of your code and/or logic that is covered by at least one test

Can be applied to many different units:
• Methods: how many functions are covered by at least one test?
• Statements: how many statements are covered by at least one test?
• Branches: have both sides of conditionals been tested?
• Paths: have all control-flow paths through a region of code been exercised?
• Too many more to list
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Code Coverage

public void DoSomething(int a, int b)

{

if (a < 0)

{

ActionOne();

}

else

{

ActionTwo();

}

if (b > 0)

{

ActionThree();

}

else

{

ActionFour();

}

}

Test Cases:
• DoSomething(-1, 1)

• DoSomething(1, -1)

What is our branch coverage?

What is our path coverage?
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Best Practices

• Aim for 100% code coverage, even if you “know” the code works
• Even simple tests are useful to give yourself confidence a later refactor does not break your product

• Try to break the code
• Can you glitch the game to cheat?
• Use negative tests to enforce graceful handling of error conditions
• Be creative!

• Use requirements document to drive creation of tests, not the code
• Add tests as pre-merge check for Pull Requests

• Prevent source control from accepting broken changes in main development branch
• Write tests early and often
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Test-Driven Development

Traditional model:
• Design
• Write code to implement design
• Write tests to verify code meets design

Test-driven development (TDD) flips this around:
• Design
• Write tests to verify design based on requirements
• Write code with the goal of passing tests

Effectively changes coding goals from “implement design” to “pass tests”

Requires very rigorous test authoring!
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Quality Assurance

Quality Assurance (QA) goes beyond software testing

Examples:
• Is the application easy to install?
• Is the application easy to start?
• Is there adequate documentation on the application?
• Does the application run on older hardware?
• Does the application have accessibility features?

Games have some unique categories:
• How is the game balance? Too easy? Too hard?
• Is the game able to maintain a consistent frame rate?

Consider how to incorporate playtesting into your sprint timeline

Justin Holewinski (The Ohio State University) CSE 3902: Software Testing and Quality Assurance 7/7


