
CSE 3902: Git and GitHub

Justin Holewinski

The Ohio State University

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 1/10



Source Control Management

Source Control Management (SCM) is software that helps track changes
• Also known as source control or version control
• Records snapshots of your code at developer-determined intervals

Why?
• Look at previous versions of the code
• See who made a particular change
• See why a particular change was made
• Share code with other developers in a coherent manner

Comes in two flavors:
• Centralized
• Decentralized

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 2/10



Centralized Source Control

• Standard client-server model
• Server is single-source-of-truth
• Clients communicate changes to server
• Examples

• Subversion
• Perforce (without DVCS)

Server

Client Client Client Client

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 3/10



Decentralized Source Control

• Commonly known as Distributed Version
Control System (DVCS)

• No server required, everyone can share
changes with everyone else

• Examples
• Git
• Mercurial
• Perforce DVCS

Client

Client

Client

Client

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 4/10



Decentralized Source Control

Common DVCS usage does have a centralized
component

• Take advantage of both worlds
• Allow distributed code sharing and a

centralized source-of-truth
• DVCS systems typically provide more features

for the developer GitHub

Developer Developer Developer Developer

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 5/10



Git

Advantages
• Very popular and always growing
• Lots of hosting services

• GitHub
• GitLab
• Azure DevOps
• BitBucket

• Lots of great features
• Light-weight feature branches
• Smart merging
• Scalable

Disadvantages
• Learning curve can be steep
• Not great with large binary files

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 6/10



Git Basics

Source history is maintained as a sequence of commits
• Each commit is a “snapshot” of the code base at the time of commit
• Each commit is identified by a unique SHA hash
• Each commit is attributed to an author
• Each commit has zero or more predecessors

All of history is maintained as a DAG

main

0-
c3
db
5e
8

1-
9f
7f
7b
e

2-
8e
93
f2
5

3-
34
36
80
3

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 7/10



Git Basics

New features are normally developed on feature branches

main

my-feature

0-
cc
5f
81
5

1-
2f
39
63
c

2-
c2
f5
48
6

3-
11
23
29
c

4-
a2
a7
8b
5

5-
02
21
39
d

6-
23
fd
dd
a

8-
e7
0e
67
4

A merge commit joins two divergent code lines

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 8/10



Git Basics

Common git operations you’ll be using:
• clone: Create a copy of another git tree
• fetch: Copy new changes from another git tree
• push: Copy changes to another git tree
• merge: Join two divergent code lines
• pull: Equivalent of fetch + merge (usually)
• rebase: “Replay” a branch on another branch

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 9/10



Git and GitHub Demos

• Creating a GitHub project
• Cloning a GitHub project
• Making a change and commiting to git
• Pushing changes to GitHub
• Opening a Pull Request
• Reviewing a Pull Request
• Merging a Pull Request
• Creating GitHub Issues

Justin Holewinski (The Ohio State University) CSE 3902: Git and GitHub 10/10


