
CSE 3902: Misc Software Topics

Justin Holewinski

The Ohio State University

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 1/8



Amdahl’s Law

How do we assess optimization potential of code?

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) = 1
(1 − 𝑝) + 𝑝

𝑠

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) Theoretical improvement ratio
𝑝 Ratio of program execution time for section being optimized
𝑠 Improvement ratio from optimization

https://en.wikipedia.org/wiki/Amdahl%27s_law

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 2/8



Amdahl’s Law Example

Simple Program

Function1(); // 10ms

Function2(); // 25ms

Function3(); // 15ms

What if we double the execution speed of
Function2?

𝑝 = 25
10 + 25 + 15

= 25
50

= 0.5
𝑠 = 2

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) = 1
(1 − 𝑝) + 𝑝

𝑠

= 1
(1 − 0.5) + 0.5

2

= 1
0.5 + 0.25

= 1.33

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 3/8



Code Smells

A code smell is an indicator of a design problem in your code
• Does not affect functionality (not a bug), but may lead to future bugs
• Leads to many issues

• Hard to extend code
• Hard to debug code
• Hard to reason about code

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 4/8



Code Smells

Common smells
• Mysterious Name: names that do not convey a meaning
• Contrived Complexity: use of unnecessarily-complex design patterns
• Large Class: class that does too much
• Long Method: method that does too much
• Magic Constants: hard-coded immediates instead named constants
• Too Many Parameters: lots of function parameters

More information: https://en.wikipedia.org/wiki/Code_smell

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 5/8



Technical Debt

Technical debt is the future cost associated with design and coding choices, often made due to time or
business constraints. This debt usually has a direct impact on the maintainability and overall quality of a
software project.

Causes:
• Time crunch
• Deferred refactoring
• Coupling
• Lack of engineer experience
• No clear leadership

Tackling technical debt:
• Fixing ineffective design patterns
• Taking longer to find and fix bugs
• Refactoring to make code more maintainable

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 6/8



Refactoring

Refactoring is the process of cleaning up your code by making non-functional changes.

Examples:
• Replacing object creation with factory
• Introducing commands between initiator and receiver
• Modifying source formatting/style
• Splitting a large class into smaller classes
• Removing magic numbers

The goal of refactoring is to improve the maintainability of your code.

Warning: refactoring can lead to bugs! Ensure you have a good test plan for before and after refactoring
to ensure functionality is unaffected.

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 7/8



Refactoring

public void LoadLevel()

{

// ...

foreach (EnemyData data in level.EnemyData)

{

if (data.Type == "goomba")

{

Texture2D tex =

Content.Load<Texture2D>(/*...*/);

Vector2 position =

data.StartPosition + WorldOffset;

enemies.Add(new Goomba(tex, position));

}

else if (data.Type == "koopa")

{

Texture2D tex =

Content.Load<Texture2D>(/*...*/);

Vector2 position =

data.StartPosition + WorldOffset;

enemies.Add(new Koopa(tex, position));

}

}

}

public void LoadLevel()

{

// ...

foreach (EnemyData data in level.EnemyData)

{

Vector2 position = data.StartPosition + WorldOffset;

enemies.Add(EnemyFactory.Get(data.Type, position));

}

}

Why is this code “better”? Think about:
• Coupling
• Cohesion
• Maintainability
• Readability

Justin Holewinski (The Ohio State University) CSE 3902: Misc Software Topics 8/8


