
CSE 3902: C# Primer

Justin Holewinski

The Ohio State University

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 1/15



Disclaimer

The following slides are meant to be a very high-level overview of C#; just enough to get you started with
Sprint 0!

It is your responsibility to read the required chapters from “C# in a Nutshell” and consult additional
sources as necessary to get a comfortable understanding of the language!

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 2/15



Variables

Variables are declared starting with their type, or var.

// Explicit type

int num = 42;

// Implicit (compiler-inferred) type

var num = 420;

Basic Types:
• Integral: int, long, short

• Floating-Point: float, double

• Boolean: bool

• Dynamic Strings: string

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 3/15



Visibility

Class declarations use visibility modifiers to determine who can access classes and their components.
• public: Visible everywhere
• protected: Visible to derived classes
• private: Visible only to itself
• internal: Visible everywhere in the same assembly

Applies to classes, structs, methods, fields, properties, and more.

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 4/15



Conditional Statements

What is the output of the following?

int i = 1 / 2;

if (i > 0)

{

Console.WriteLine("i is greater than 0");

}

else

{

Console.WriteLine("i is NOT greater than 0");

}

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 5/15



Loops

Loops with explicit conditions

for (int i = 0; i < 5; ++i)

{

Console.WriteLine($"i: {i}");

}

while (mylist.Length != 0)

{

/* Process mylist */

}

Easy iteration over containers

List<string> messages = /* ... */;

foreach (string msg in messages) {

Console.WriteLine(msg);

}

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 6/15



Classes/Structs

Classes and structs are aggregate types that can contain:
• Methods
• Constructors
• Fields
• Properties
• Delegates
• And others …

public class Player

{

private Vector2 position;

public Player()

{

position = Vector2.Zero;

}

}

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 7/15



Methods

public class Player

{

// Constructor

public Player() {}

// Overloads

public void SetPosition(Vector2 newPos) { /*...*/ }

public void SetPosition(float x, float y) { /*...*/ }

// Static Methods

public static int GetMaxHealth() { /*...*/ }

}

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 8/15



Fields

public class Player

{

public int health = 10;

private ISprite sprite = /* ??? */;

public static int maxHealth = 100;

}

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 9/15



Properties

public class Player

{

public int Health

{

get

{

return health;

}

set

{

health = Math.Min(value, MaxHealth);

}

}

}

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 10/15



Classes

Classes are reference types in C#

public class Player

{

public int x = 0;

public void Move() { x += 1; }

}

// "me" is a reference to the object created by "new Player()"

Player me = new Player();

// "alsoMe" is a reference to the same object

Player alsoMe = me;

// Any side effects of "Move()" will be visible in "me" and "alsoMe"

me.Move();

Debug.Assert(me.x == 1);

Debug.Assert(alsoMe.x == 1);

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 11/15



Structs

Structs are value types in C#

public struct Player

{

public int x = 0;

public void Move() { x += 1; }

}

// "me" is the object created by "new Player()"

Player me = new Player();

// "other" is a unique object created by copying "me"

Player other = me;

// Any side effects of "Move()" will be visible in "me" but not "other"

me.Move();

Debug.Assert(me.x == 1);

Debug.Assert(other.x == 0);

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 12/15



Parameter Passing

The reference vs value distinction is important for parameter passing

public class Player

{

public Point Position = new Point(0, 0);

}

public void MovePlayer(Player player)

{

player.Position.X += 10;

}

Player me = new Player();

// "me" will be passed by reference to MovePlayer.

// Changes will be visible in the caller.

MovePlayer(me);

Debug.Assert(me.Position.X == 10);

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 13/15



Parameter Passing

public struct Position

{

public int X = 0;

}

public void ChangePosition(Position pos)

{

pos.X += 10;

}

Position here = new Position();

// "here" will be passed by value (by copy) to ChangePosition.

// Changes will NOT be visible in the caller.

ChangePosition(here);

Debug.Assert(here.X == 0);

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 14/15



Parameter Passing

Use ref to enable pass-by-reference semantics for struct types.

public void ChangePosition(ref Position pos)

{

pos.X += 10;

}

Position here = new Position();

// "here" will be passed by reference to ChangePosition.

// Changes WILL be visible in the caller.

ChangePosition(ref here);

Debug.Assert(here.X == 10);

Justin Holewinski (The Ohio State University) CSE 3902: C# Primer 15/15


